个人简介:
2006-2016年就读于西安交大并取得学士和博士学位,期间在美国MIT交流一年,毕业留校至今依次担任新讲师、新副教授、长聘副教授和正教授以及西安交大-日立联合研发中心副主任,并入选德国洪堡学者(资深研究员类型)和yh86银河国际官方网站青年拔尖人才计划(A类)。研究方向为力、热、电和气体等多物理化学场环境中材料的微纳尺度行为机理研究,主要研究内容包括
(1)芯片及半导体器件中小尺度结构的性能分析及测试,包含开发测试技术和设备、建立测试标准及分析方法;
(2)氢能源产业发展面临的材料氢脆、储氢等瓶颈问题,研究氢脆机制,发展新型抗氢脆技术。
(3)氢冶金技术。利用氢气取代煤炭进行钢铁及其他金属的冶炼,大幅减低碳排放。
以第1或通讯作者发表Nature Materials和Nature Communications 各2篇,金属领域顶刊Acta Materialia 3篇。授权发明专利13项,荣获首批陕西省普通高校青年杰出人才、国际显微学会青年科学家、陕西省科学技术一等奖、湖南省自然科学奖二等奖、湖南省自然科学奖二等奖等荣誉和奖项。所在教师团队获得首批全国高校黄大年式教师团队以及西安交大研究生教育优秀导师团队荣誉称号,所授课程入选国家级一流本科课程。
承担国家基金委面上项目2项,青年项目1项,企业横向若干项。
获批国家发明专利12项,实现了块体提取样品的超稳定加热、定量热力耦合测试(填补了若干项市场空白),转让4件(转让金额为212.8万元),应用于华为、日立等公司零部件研发、测试以及新产品中。
招生信息(联系邮箱:dg_xie@xjtu.edu.cn):
研究生:每年可招硕士生3名和博士生1名。本课题组与美国麻省理工学院、日本大阪大学、德国马普所、新加坡南洋理工大学等著名高校有长期实质性合作,并获得基金委专项支持,易获批国家留学基金委的联合培养。
科研实习本科生:欢迎本校及外校大二或大三的材料类、机电类和电信类本科学生来进行科研实习,支持申请大创项目、创业大赛等赛事。表现优异者可以优先推荐保研、出国。
代表性论文
[1] Huang L, Chen D. Xie D* et al., Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron. Nature Materials. 2023. doi.org/10.1038/s41563-023-01537-w
[2] D. Xie*, R. Zhang, X. Dai, Z. Nie, X. Wang, E. Ma, J. Li, Z. Shan*. Long-distance interface diffusion induced non-volume-conserved deformation in self-supported submicron-sized aluminum pillars, Acta Mater. 255 (2023) 119092.
[3] Nie Z-Y, Sato Y, Ogata S, Duarte MJ, Dehm G, Li J, Ma E, Xie D-G*, Shan Z-W. Ultralong one-dimensional plastic zone created in aluminum underneath a nanoscale indent. Acta Mater. 2022;232:117944.
[4] Xie, D.-G., L. Wan, and Z.-W. Shan, Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal. Corrosion Science, 2021. 183: p. 109307.
[5] Qin, Y., Z. Nie, C. Ma, L. Huang, Y. Yang, Q. Fu, W. He, and D. Xie*, Simple nanoindentation-based method for determining linear thermal expansion coefficients of micro-scale materials. Journal of Materials Research, 2020. 35(23): p. 3202-3209.
[6] Xie, D.-G., Zhang, R.-R., Nie, Z.-Y., Li, J., Ma, E., Li, J. & Shan, Z.-W. Deformation mechanism maps for sub-micron sized aluminum. Acta Mater. 2020. 188: p. 570-578.
[7] Xie D-G, Nie Z-Y, Shinzato S, Yang Y-Q, Liu F-X, Ogata S, Li J, Ma E, Shan Z-W. Controlled growth of single-crystalline metal nanowires via thermomigration across a nanoscale junction. Nature Communications, 2019, 10 (1)4478.
[8] 解德刚 等. 氢与金属的微观交互作用研究进展. 中国材料进展 【特约专栏】 37, 055-063 (2018).
[9] Li M, Xie D-G, Ma E, Li J, Zhang X-X, Shan Z-W. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures. Nature Communications 8, 14564 (2017).
[10] Xie D, et al. Hydrogenated vacancies lock dislocations in aluminium. Nature Communications 7, 13341 (2016). (IDS:EB2CY)
[11] Xie D, Wang Z, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials, 2015, 14 (9): 899-903. (IDS:CP9CT)
[12] Zhang LQ*, Wang YC*, Xie DG*, et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode[J]. RSC Advances, 2016, 6 (14): 11441-11445.
[13] Wang Y, Xie D, Ning X, et al. Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam[J]. Applied Physics Letters, 2015, 106 (8): 081905.
[14] Xie D, Li W. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys[J]. Applied Surface Science, 2011, 258 (3): 1004-1007.
部分会议报告
[1] In situ quantitative environmental TEM tests on hydrogen-dislocation interaction in Al and Fe, The 20th International Microscopyh Congress, 10-15 September, 2023, Busan, Korea (Invited Speaker)
[2] In situ study of hydrogen-induced cavity/blister nucleation and growth at metal/oxide interface, The 20th International Microscopyh Congress, 10-15 September, 2023, Busan, Korea (Invited Speaker)
[3] 铝在微纳米尺度的高温变形行为,中国微米纳米技术学会微纳结构表征创新论坛(2023),2023年7月24日-26日,兰州(邀请报告)
[4] 用环境透射电镜原位定量研究氢对金属位错行为的影响,中国材料大会,2023年7月7-10日,深圳。(邀请报告)
[5] Hydrogen-dislocation interactions in Al and Fe revealed by in situ ETEM quantitative tests,第六届材料微结构与性能学术会议,2023年5月19-21日,杭州(邀请报告)
[6] Hydrogen-dislocation interactiona in Al and Fe Rrevealed by in situ ETEM quantitative tests, 2023 International Workshop on Materials Behavior at Micro- and Nano-Scale, May 9-12, 2023, Xi’an
[7] In-situ electron microscopy for hydrogen effect on dislocation motion and cracking in metals,第三届汽车EVI及高强度钢氢脆国际会议,2023年4月19日-21,重庆(邀请报告)
[8] Environmental Attack in Metals Revealed by in Situ ETEM, The 10th Pacific Rim International Conference on Advanced Materials and Processing (PRICM10), August 18-22, 2019 in Xi'an. (邀请报告)
[9] Hydrogen-dislocation interaction in Al and Fe revisited by quantitative mechanical tests inside TEM, TMS2019,10-14 Mar 2019, San Antonio (邀请报告)
[10] Deformation mechanism maps for submicron aluminum at elevated temperatures, TMS2019,10-14 Mar 2019, San Antonio
[11] New insights into thermomechanical and chemomechanical problems via in situ quantitative nanomechanical TEM,NTNU, invited by Prof. Afrooz Barnoush, 7 June 2018, Trondheim, Norway
[12] “Thermomechanical and Chemomechanical Experiments by in situ TEM: a Case Study on Hydrogen Embrittlement/Damage”, Oxford University, invited by Prof. Sergio Lozano-Perez, 25 May, 2018, Oxford, UK
[13] “The role of hydrogenated vacancies on modulus, dislocation behavior and interfacial damage in pure aluminum”, 3rd International Conference on Metals & Hydrogen, 29-31 May 2018, Ghent, Belgium
[14] “用环境透射电子显微镜原位研究氢和位错及界面的交互作用”, 第一届中国汽车EVI及高强度钢氢致延迟断裂会议,12月14-15日,2017,北京(邀请报告)
[15] Xie D.-G., “Hydrogen effects on dislocation motion revisited by quantitative mechanical tests inside TEM”, 2016 International Hydrogen Conference, Moran, WY, USA, Sep. 11-14, 2016